Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Multi-year profiles of T3 are positively correlated with corticosterone in male bowhead whale baleenThyroid hormones play an important role in the regulation of growth, development, metabolism, thermoregulation, and migration. Very little information exists on patterns of thyroid hormone concentrations in healthy mysticete whales, as many studies have focused on ill, entangled, or stranded whales, making it difficult to interpret thyroid hormone trends. In this study, we used a unique sample-set of bowhead whale baleen plates to explore the long-term interrelationships between triiodothyronine (T3), the most biologically active thyroid hormone, corticosterone, testosterone, and nitrogen isotope ratios (δ15N) (proxies for stress, reproduction, and diet, respectively) to investigate the role T3 may play in the physiology of healthy cetaceans. Baleen plates were collected between 1998 and 2011 from eight subsistence-harvested male bowhead whales across the Eastern Canadian Arctic. Each baleen plate generated 88–158 serial samples, representing ~11–22 years of life for each individual whale. T3 concentrations ranged from 0.61 to 21.62 ng/g and varied seasonally in just two whales. Most whales showed no correlation between T3 and seasonal fluctuations in testosterone or δ15N, suggesting that variation in T3 is not driven by seasonal shifts in reproductive cycles, consumer trophic level, or migration. However, a strong positive correlation between T3 and corticosterone was observed in every whale, which we hypothesized was due to non-seasonal factors that simultaneously increase metabolic rate and physiological stress. The positive correlation between T3 with corticosterone suggests that in mysticete whales, some stressors may require increased energetic output.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Gestation length is a key reproductive parameter influencing fecundity, population growth rates, and the recovery potential of baleen whales. However, direct knowledge of the gestation length in these large mammals remains limited, primarily inferred from whaling and observational data. Over the past decade, southern right whales have experienced a decline in reproductive success, likely linked to climate-change-induced shifts in foraging conditions. Understanding the population-level consequences of these changes requires detailed longitudinal reproductive data. This study analyzes multiyear steroid hormone profiles in the baleen of adult female southern right whales stranded along the South African coast. Results show an extended hormonal pattern characterized by two peaks in progestogens between 20 and 25 months—suggesting putative pregnancies lasting substantially longer than previous estimates. Sharp estrogen peaks during periods of elevated progestogen phases may indicate hormonal regulation of myometrial contractions at birth. A positive correlation between progestogens and glucocorticoids suggests a role for glucocorticoids in pregnancy maintenance, while androgens provide limited insight into female reproduction in this species. These findings imply a longer-than-expected gestation period for southern right whales and potentially across the balaenid family. This has important implications for understanding the timing and location of conception, relevant for conservation management strategies. Multipopulation studies alongside individual sighting histories are recommended to refine our understanding of southern right whale reproduction further.more » « lessFree, publicly-accessible full text available June 17, 2026
-
Madliger, Christine (Ed.)Abstract Hormone monitoring of at-risk species can be valuable for evaluation of individual physiological status. Traditional non-invasive endocrine monitoring from urine and faeces typically captures only a short window in time, poorly reflecting long-term hormone fluctuations. We examined toenail trimmings collected from African (Loxodonta africana) and Asian (Elephas maximus) elephants during routine foot care, to determine if long-term hormone patterns are preserved in these slow-growing keratinized tissues. We first measured the growth rate of elephant toenails biweekly for one year, to establish the temporal delay between deposition of hormones into nail tissue (at the proximal nail bed) and collection of toenail trimmings months later (at the distal tip of the nail). In African elephants, toenails grew ~0.18 ± 0.015 mm/day (mean ± SEM) and in Asian elephants, toenails grew ~0.24 ± 0.034 mm/day. This slow growth rate, combined with the large toenail size of elephants, may mean that toenails could contain a ‘hormone timeline’ of over a year between the nail bed and nail tip. Progesterone, testosterone and cortisol were readily detectable using commercial enzyme immunoassays, and all assays passed validations, indicating that these hormones can be accurately quantified in elephant toenail extract. In most cases, variations in hormone concentrations reflected expected physiological patterns for adult females and males (e.g. ovarian cycling and musth) and matched individual health records from participating zoos. Progesterone patterns aligned with our calculations of temporal delay, aligning with female ovarian cycling from over six months prior. Unexpectedly, male testosterone patterns aligned with current musth status at the time of sample collection (i.e. rather than prior musth status). Though this sample type will require further study, these results indicate that preserved hormone patterns in elephant toenails could give conservationists a new tool to aid management of elephant populations.more » « less
-
Abstract Understanding reproductive physiology in mysticetes has been slowed by the lack of repeated samples from individuals. Analysis of humpback whale baleen enables retrospective hormone analysis within individuals dating back 3–5 years before death. Using this method, we investigated differences in four steroid hormones involved in reproduction and mating during confirmed pregnant and non-pregnant periods in two female humpback whales (Megaptera novaeangliae) with known reproductive histories based on sightings and necropsy data. Cortisol, corticosterone, testosterone, and estradiol concentrations were determined via enzyme immunoassay using subsamples of each baleen plate at 2 cm intervals. There were no significant differences in cortisol or corticosterone during pregnancy when compared to non-pregnancy (inter-calving interval), but there were significant differences between the two whales in average glucocorticoid concentrations, with the younger whale showing higher values overall. For testosterone, levels for the younger female peaked at parturition in one pregnancy, but also had spikes during non-pregnancy. The older female had three large spikes in testosterone, one of which was associated with parturition. Estradiol had large fluctuations in both whales but had generally lower concentrations during non-pregnancy than during pregnancy. There were peaks in estradiol before each pregnancy, possibly coinciding with ovulation, and peaks coinciding with the month of parturition. Both estradiol and testosterone could be useful for determining ovulation or impending birth. Using baleen to investigate retrospective steroid hormone profiles can be used for elucidating long-term patterns of physiological change during gestation. Lay summary Case studies of two pregnant humpback whales whose hormones were analyzed in baleen may illuminate when humpback whales ovulate, gestate, and give birth. These physiological metrics could assist in accurate population growth assessments and conservation of the species. This study shows that baleen hormone analysis can be a useful tool for understanding whale reproductive physiology.more » « less
-
Synopsis Male mammals of seasonally reproducing species typically have annual testosterone (T) cycles, with T usually peaking during the breeding season, but occurrence of such cycles in male mysticete whales has been difficult to confirm. Baleen, a keratinized filter-feeding apparatus of mysticetes, incorporates hormones as it grows, such that a single baleen plate can record years of endocrine history with sufficient temporal resolution to discern seasonal patterns. We analyzed patterns of T every 2 cm across the full length of baleen plates from nine male bowhead whales (Balaena mysticetus) to investigate occurrence and regularity of T cycles and potential inferences about timing of breeding season, sexual maturation, and reproductive senescence. Baleen specimens ranged from 181–330 cm in length, representing an estimated 11 years (smallest whale) to 22 years (largest whale) of continuous baleen growth, as indicated by annual cycles in stable isotopes. All baleen specimens contained regularly spaced areas of high T content (T peaks) confirmed by time series analysis to be cyclic, with periods matching annual stable isotope cycles of the same individuals. In 8 of the 9 whales, T peaks preceded putative summer isotope peaks by a mean of 2.8 months, suggesting a mating season in late winter / early spring. The only exception to this pattern was the smallest and youngest male, which had T peaks synchronous with isotope peaks. This smallest, youngest whale also did not have T peaks in the first half of the plate, suggesting initiation of T cycling during the period of baleen growth. Linear mixed effect models suggest that whale age influences T concentrations, with the two largest and oldest males exhibiting a dramatic decline in T peak concentration across the period of baleen growth. Overall, these patterns are consistent with onset of sexual maturity in younger males and possible reproductive senescence in older males. We conclude that adult male bowheads undergo annual T cycles, and that analyses of T in baleen may enable investigation of reproductive seasonality, timing of the breeding season, and life history of male whales.more » « less
An official website of the United States government
